Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves.

نویسندگان

  • Guo-Hong Ning
  • Zixuan Chen
  • Qiang Gao
  • Wei Tang
  • Zhongxin Chen
  • Cuibo Liu
  • Bingbing Tian
  • Xing Li
  • Kian Ping Loh
چکیده

Porous materials such as covalent organic frameworks (COFs) are good candidates for molecular sieves due to the chemical diversity of their building blocks, which allows fine-tuning of their chemical and physical properties by design. Tailored synthesis of inherently functional building blocks can generate framework materials with chemoresponsivity, leading to controllable functionalities such as switchable sorption and separation. Herein, we demonstrate a chemoselective, salicylideneanilines-based COF (SA-COF), which undergoes solvent-triggered tautomeric switching. This is unique compared to solid-state salicylideneanilines' counterpart, which typically requires high energy input such as photo or thermal activation to trigger the enol-keto tautomerisim and cis-trans isomerization. Accompanying the tautomerization, the ionic properties of the COF can be tuned reversibly, thus forming the basis of size-exclusion, selective ionic binding or chemoseparation in SA-COF demonstrated in this work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards covalent organic frameworks with predesignable and aligned open docking sites.

A strategy for the synthesis of covalent organic frameworks with open docking sites is developed. The docking sites are ordered on the channel walls and structurally predesignable for meeting various types of noncovalent interactions, thus opening a way towards designing supramolecular materials based on crystalline porous organic frameworks.

متن کامل

Crystallization of Covalent Organic Frameworks for Gas Storage Applications.

Covalent organic frameworks (COFs) have emerged as a new class of crystalline porous materials prepared by integrating organic molecular building blocks into predetermined network structures entirely through strong covalent bonds. The consequently encountered "crystallization problem" has been conquered by dynamic covalent chemistry in syntheses and reticular chemistry in materials design. In t...

متن کامل

Base free transfer hydrogenation using a covalent triazine framework based catalyst

Transfer hydrogenation (TH) reaction – the addition of hydrogen to an unsaturated group of an organic molecule from a source other than H2 – has been gaining a lot of attention as it is an appealing alternative to direct hydrogenation. The reasoning behind it is the elimination of pressurised hydrogen and high pressure equipment use. Besides, a conventional hydrogenation catalyst is rarely sele...

متن کامل

On the road towards electroactive covalent organic frameworks.

Covalent organic frameworks (COFs) are a novel class of porous crystalline organic materials assembled from molecular building blocks. The construction principles of these materials allow for the design of precisely controllable structures since their chemical and physical properties can be easily tuned through the selection of the building blocks and the linkage motif. Their extraordinary and ...

متن کامل

Multiple-component covalent organic frameworks

Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 139 26  شماره 

صفحات  -

تاریخ انتشار 2017